はじめに
lmfitは非線形最小二乗法を用いてカーブフィットするためのライブラリであり、Scipy.optimize.curve_fitの拡張版に位置する。ここでは、lmfitでデータを指数関数的減衰モデルによりカーブフィッティングする方法について説明する。
コード
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import default_rng
from lmfit.models import ExponentialModel
x = np.linspace(0,5,50)
def f(x,a,t):
return a*np.exp(-x/t)
rng = default_rng()
noise = rng.random(50)
y = f(x,10,1) + noise
fig, ax = plt.subplots(dpi=130)
ax.plot(x,y,"o")
ax.set(xlabel="x",ylabel="y")
plt.savefig("lmfit14_1.png",dpi=130)
plt.show()
model = ExponentialModel()
params = model.guess(y, x=x)
params
"""
name value initial value min max vary
amplitude 8.25485286 None -inf inf True
decay 1.51239229 None -inf inf True
"""
result = model.fit(y, params, x=x)
print(result.fit_report())
"""
[[Model]]
Model(exponential)
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 16
# data points = 50
# variables = 2
chi-square = 6.67349486
reduced chi-square = 0.13903114
Akaike info crit = -96.6939658
Bayesian info crit = -92.8699198
[[Variables]]
amplitude: 9.87943792 +/- 0.19812223 (2.01%) (init = 8.254853)
decay: 1.23987140 +/- 0.03684039 (2.97%) (init = 1.512392)
[[Correlations]] (unreported correlations are < 0.100)
C(amplitude, decay) = -0.680
"""
fig, ax = plt.subplots(dpi=130)
result.plot_fit(ax=ax)
plt.savefig("lmfit14_2.png",dpi=130)
plt.show()
fig = plt.figure(dpi=130,figsize=(6,6))
result.plot(fig=fig)
plt.savefig("lmfit14_3.png",dpi=130)
plt.show()

解説
モジュールのインポートなど
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import default_rng
from lmfit.models import ExponentialModel
バージョン
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#version
import matplotlib
print(matplotlib.__version__)
3.3.4
import lmfit
print(lmfit.__version__)
1.0.2
print(np.__version__)
1.20.1
データの生成
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
x = np.linspace(0,5,50)
def f(x,a,t):
return a*np.exp(-x/t)
rng = default_rng()
noise = rng.random(50)
y = f(x,10,1) + noise
yデータはf(x,a,t)で定義した関数で作成する。rng = default_rng()とし、rng.random(50)でランダムデータを作成しyデータのノイズとする。xとyの関係を図で示すと以下のようになる。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fig, ax = plt.subplots(dpi=130)
ax.plot(x,y,"o")
ax.set(xlabel="x",ylabel="y")
plt.savefig("lmfit14_1.png",dpi=130)
plt.show()

モデルの定義
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
model = ExponentialModel()
lmfit.models
の ExponentialModel
をモデル関数として用いる。
初期パタメータの推定
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
params = model.guess(y, x=x)
model.guess(y, x=x)
により、上図のデータを指数関数的減衰関数で近似するためのフィッティングパラメータについて、初期値を推定する。パラメータ(params)は以下のようになる。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
params
"""
name value initial value min max vary
amplitude 8.25485286 None -inf inf True
decay 1.51239229 None -inf inf True
"""
カーブフィット
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
result = model.fit(y, params, x=x)
model.fit(y, params, x=x)
により、カーブフィッティングを実行する。
フィッティング結果の表示
print(result.fit_report())
により、フィッティングの結果を見ることができる。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
print(result.fit_report())
"""
[[Model]]
Model(exponential)
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 16
# data points = 50
# variables = 2
chi-square = 6.67349486
reduced chi-square = 0.13903114
Akaike info crit = -96.6939658
Bayesian info crit = -92.8699198
[[Variables]]
amplitude: 9.87943792 +/- 0.19812223 (2.01%) (init = 8.254853)
decay: 1.23987140 +/- 0.03684039 (2.97%) (init = 1.512392)
[[Correlations]] (unreported correlations are < 0.100)
C(amplitude, decay) = -0.680
"""
result.plot_fit()
によりデータとフィッティングカーブが表示される。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fig, ax = plt.subplots(dpi=130)
result.plot_fit(ax=ax)
plt.savefig("lmfit14_2.png",dpi=130)
plt.show()

result.plot()
とすることで残差とともにフィッティング結果が表示される。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fig = plt.figure(dpi=130,figsize=(6,6))
result.plot(fig=fig)
plt.savefig("lmfit14_3.png",dpi=130)
plt.show()

参考
Built-in Fitting Models in the models module — Non-Linear Least-Squares Minimization and Curve-Fitting for Python
Random Generator — NumPy v2.2 Manual
コメント