[lmfit] 15. べき乗則モデルによるカーブフィッティング

lmfit

はじめに

lmfitは非線形最小二乗法を用いてカーブフィットするためのライブラリであり、Scipy.optimize.curve_fitの拡張版に位置する。ここでは、lmfitでデータをべき乗則モデルによりカーブフィッティングする方法について説明する。

コード

解説

モジュールのインポートなど

バージョン

データの生成

yデータはf(x,a,k)で定義した関数で作成する。rng = default_rng()とし、rng.random(50)でランダムデータを作成しyデータのノイズとする。xとyの関係を図で示すと以下のようになる。

モデルの定義

lmfit.modelsPowerLawModelをモデル関数として用いる。

初期パタメータの推定

model.guess(y, x=x)により、上図のデータをべき乗則モデルで近似するためのフィッティングパラメータについて、初期値を推定する。パラメータ(params)は以下のようになる。

カーブフィット

model.fit(y, params, x=x)により、カーブフィッティングを実行する。

フィッティング結果の表示

print(result.fit_report())により、フィッティングの結果を見ることができる。

result.plot_fit()によりデータとフィッティングカーブが表示される。

result.plot()とすることで残差とともにフィッティング結果が表示される。

コードをダウンロード(.pyファイル)

コードをダウンロード(.ipynbファイル)

参考

Built-in Fitting Models in the models module — Non-Linear Least-Squares Minimization and Curve-Fitting for Python
Random Generator — NumPy v2.2 Manual

コメント